Mark scheme - Newton's Law of Motion and Momentum

	Total	1	
7	C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The correct key was C: The total force acting on the twotrolley system during the collision is zero. The most frequent distractor was A: The momentum of each trolley is conserved. The term 'each' did not register with most candidates. It is the total momentum of the two trolleys that is conserved.
	Total	1	
8	A	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
	Total	1	
9	B	1	
	Total	1	
10	A	1	
	Total	1	
11	B	1	
	Total	1	
12	A	1	
	Total	1	
13	A	1	Examiner's Comments This question was more challenging still. In this question, candidates often forgot that the impulse provided by the hockey stick is in the opposite direction to the momentum of the puck, again giving option A as the correct answer.
	Total	1	
14	B	1	

3.5 Newton's Laws of Motion and Momentum

3.5 Newton's Laws of Motion and Momentum

25	a	$\begin{aligned} & m v-m u=F \Delta t(u=0) / \text { area under } \\ & \text { graph }=\Delta p \\ & m v=\frac{0.010+0.040}{2} \times 150 \\ & m v=3.75 \text { or }^{v}=\frac{3.75}{0.16} \\ & v=23\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1	Allow 'impulse' for Δp
			C1	Allow alternative methods for finding area.
			A1	Note answer to 3 s.f. is $23.4 \mathrm{~m} \mathrm{~s}^{-1}$
	b	Curve upwards with decreasing gradient.	M1	
		Curve starts at a non-zero velocity at t $=30 \mathrm{~ms}$.	A1	
	c	$F \Delta t=m v-m u$		Allow other correct methods
		$T=\frac{0.16 \times 23}{0.80}$	C1	Possible ECF from (a)
		$T=4.6$ (s)	A1	Note the answer is $4.7(\mathrm{~s})$ when $23.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ is used
26	a	Total	7	
		$F=\frac{\Delta m v}{\Delta t} \quad$ or $F \Delta t=\Delta m v$ or (resultant force) $=$ rate of change of momentum area under graph $=\Delta m v$ or Δp or change in momentum or impulse	B1 B1	Allow p instead of $m v$ Allow: proportional for equals (rate of change of momentum) Examiner's Comments It was good to see that most candidates understood that Newton's second law of motion is more than the statement that $F=m a$. Many had successful attempts with some candidates missing that it is the rate of change of momentum, rather than the change of momentum that is required. About two-thirds of candidates also correctly indicated that the area under the graph represents the impulse or the change in momentum. In Question 20(b), some candidates assumed, incorrectly, that the maximum force multiplied by the time taken would give the change in momentum and so scored zero marks. Rather more simply divided the maximum force by the mass, which gave the right answer yet with incorrect physics. This approach also scored zero. In fact, more successful responses made it clear that the area of the triangle on the graph was the impulse and that that area gave a change in momentum of 900 Ns .
	b	$\begin{aligned} & \text { area under graph }=0.5 \times 2.0 \times 900= \\ & 900(\mathrm{~N} \mathrm{~s}) \\ & (m U=900) \\ & U=13\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Not: (initial force/mass) Examiner's Comments It was good to see that most candidates understood that Newton's second law of motion is more than the statement that $F=m a$. Many had successful attempts with some candidates missing that it is the rate of change of momentum, rather than the change of momentum that is

			- Using either $4.9 \mathrm{~m} \mathrm{~s}^{-1}$ or $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ to calculate the force.
	Total	7	
28	Earth	B1	Allow planet / ground Examiner's Comments This question was poorly answered, with only the very top candidates realising that it was the Earth experiencing the force W in the opposite direction. 'Ground' instead of the Earth was allowed by examiners - but such answers were extremely rare. Newton's third law remains enigmatic to many candidates. The most popular incorrect answers were 'ball' and 'table'.
	The forces are not of the same type / The forces act on the same object	B1	Allow The forces do not act on different objects Examiner's Comments Examiners were looking for the idea that in Newton's third law, the pair of forces were of the same type and had to act on two separate objects. The force W is a gravitational force and N is the normal contact force is an electrostatic force between the base of the ball and the top of the table. The variety of incorrect answers demonstrated the lack of comprehension of this law. The two exemplars below show answers from a top-end candidate and a candidate securing a middle-grade. Exemplar 4 According to a student, $W=N$ is a consequence of. Newton's third law of motion. State why this is incorrect. W and N are not the same type of forces and this is nof aconseguence of Newton's....... [1] enira awo of motion. In this exemplar from a top-end candidate, the response is half of the total response, but it was given 1 mark by the examiners. Some candidates went a step further by mentioning that W is a gravitational force and N is an electrostatic force. Exemplar 5 According to a student, $W=N$ is a consequence of Newton's third law of motion. State why this is incorrect. \qquad amil eppuible frue. This illustrates a strange response from a low-grade candidate. It shows poor understanding of this important law. There is nothing worthy here for credit.
	Total	2	

29		'No motion' explained either in terms of the first law or second law There is no / negligible resultant force	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $F=m a$, since $F=0$, a is zero (hence at rest) Allow an object continues in a state of rest or uniform motion unless acted upon by a (resultant) force. ALLOW no frictional / extra/new force
		Total	2	
30		$\begin{aligned} & (\text { k.e. }=) E=5.0 \times 10^{6} \times 1.6 \times 10^{-19} \\ & v=\sqrt{ }(2 E / m) \text { or }=\sqrt{ }\left(2 \times 8.0 \times 10^{-13} / 6.6\right. \\ & \left.\times 10^{-27}\right)=1.6 \times 10^{7}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ $\begin{aligned} & p(=m v)=6.6 \times 10^{-27} \times 1.6 \times 10^{7} \\ & \text { giving } p=1.1 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	$E=8(.0) \times 10^{-13} \mathrm{~J}$ $\text { or }\left(E=p^{2} / 2 m \text { so }\right) p=\sqrt{ }(2 m E)$ Note: A value of $v=1.6 \times 10^{7}\left(\mathrm{~ms}^{-1}\right)$ automatically scores both C1 marks even if the calculation for E is not shown $\begin{aligned} & \text { or } p\left(=\sqrt{ }(2 m E)=\sqrt{ }\left(2 \times 6.6 \times 10^{-27} \times 8.0 \times 10^{-13}\right)\right. \\ & \text { giving } p=1.0 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ Full substitution of values must be shown and answer (if calculated) must be correct Examiner's Comments This question provided an excellent opportunity for candidates to produce immaculate responses: identify the physics involved, select and write down the correct formula, do the necessary conversion (MeV to J), rearrange the formula, substitute correctly and then write the final response in standard form to a correct number of significant figures. Some of the common errors were: - forgetting to convert 5.0 MeV into J - not showing a full substitution of values (which is necessary for a 'show that' question) - not calculating the response to more than 1 s.f. (which is necessary for a 'show that' question).
		Total	3	
31	a	$\begin{aligned} & (t=) 2 \times 1.3 \quad \text { or } 2.6(\mathrm{~s}) \\ & \\ & (x=) 68 \cos 11^{\circ} \times \text { or } 174(\mathrm{~m}) \\ & 2.6 \\ & \text { horizontal distance }=174-90 \\ & \text { horizontal distance }=84(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Note answer is 86 (m) if 1.32 s is used Note answer is $87(\mathrm{~m})$ if $1.3226 \ldots \mathrm{~s}$ is used Allow $1.3 \times 68 \cos 11^{\circ}$ for 1 mark Allow 3 or -3 m for 2 marks
	b	A collision in which kinetic energy is lost	B1	Allow KE is not conserved
		Conservation of momentum Idea that velocity is to the right and velocity is very small / much smaller than $68\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Not 'goes backwards'
		Total	6	

3.5 Newton's Laws of Motion and Momentum

| 32 | a | Ft $=\mathrm{mv}+\mathrm{mu}$
 $\mathrm{Ft}=0.6(6+11)=10(.2)$
 $\mathrm{F}=10 / 0.18=57(\mathrm{~N})$ | C 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 3 \& \\
\hline 37 \& i \& Example (not to scale): \& B1
B1 \& \begin{tabular}{l}
horizontal arrow (judge by eye), in the direction shown \\
arrow drawn at an angle of \(60^{\circ}\) to the horizontal (angle must be shown), in the direction shown
\end{tabular} \\
\hline \& ii \& \begin{tabular}{l}
Example (not to scale): \\
(Can apply principle of) conservation of momentum (since no external forces are acting)
\end{tabular} \& \& \begin{tabular}{l}
arrow drawn at an angle of \(60^{\circ}\) to the horizontal (angle must be shown), in the direction shown \\
Examiner's Comments \\
This was not an easy question but, even so, a good number of candidates did well. The marks were given for the direction (rather than for the magnitude) of the momentum vectors. Some of the common errors were: \\
- forgetting to label relevant angles \\
- not using arrows to show direction \\
- drawing a vector triangle without any indication of which arrow was meant to be the final momentum.
\end{tabular} \\
\hline \& \& Total \& 4 \& \\
\hline 38 \& i \& KE is conserved (as well as momentum) \& B1 \& Allow: No KE lost \\
\hline \& ii \& \begin{tabular}{l}
Attempt at conservation of momentum in x - or y - direction \\
Correct expression of conservation of momentum in x - or y -direction / correct determination for velocity of \(Y\) of \(55(3) \mathrm{m} \mathrm{s}^{-1}\)
\[
p=3.7 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)
\]
\end{tabular} \& C1
C1

A1 \& | Allow confusion of sin and cos at this stage Allow attempt at conservation of KE |
| :--- |
| Allow any subject $\begin{aligned} & \text { e.g. } p \cos \left(25^{\circ}\right)+m \times 258 \cos \left(65^{\circ}\right)=m \times 610 \\ & \text { or } p \sin \left(25^{\circ}\right)=m \times 258 \sin \left(65^{\circ}\right) \\ & \text { or }(p)^{2}+(m \times 258)^{2}=(m \times 610)^{2} \\ & \text { or } 1 / 2 m v^{2}+1 / 2 m(258)^{2}=1 / 2 m(610)^{2} \end{aligned}$ |
| Answer is $3.67 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ to 3 sf |
| Examiner's Comments |
| Most candidates correctly remembered that an elastic collision is one in which KE is conserved. In this series, it was acceptable to refer to 'no loss of KE'. |

\hline
\end{tabular}

3.5 Newton's Laws of Motion and Momentum

		Total	9	
40	i	$\begin{aligned} & \left(F=\frac{\Delta p}{\Delta t}\right) ; \quad F=(-) \frac{10-6}{0.2} \text { or } F=(-) \frac{4}{0.2} \\ & \text { force }=(-) 20(\mathrm{~N}) \end{aligned}$	C1 A1	Ignore sign $\text { Note }{ }^{\prime} F=(-) \frac{10+6}{0.2}=80 \mathrm{~N}^{\prime} \text { scores zero }$ Examiner's Comments Some of the answers were quite brief but most of the candidates knew that force was equal to the rate of change of momentum. The correct answer of 20 N appeared on numerous scripts. A few candidates used $\Delta t=2.0 \mathrm{~s}$ rather than $\Delta t=0.20 \mathrm{~s}$.
	ii	momentum $=8\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ between $t=$ 0 and 0.40 s momentum $=12\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ after $t=$ 0.60 s momentum increases linearly between 0.40 s and 0.60 s	B1 B1 B1	Ignore omission of label \mathbf{Y} Examiner's Comments This was a good discriminator with many of the top-end candidates scoring full marks. A good number of candidates had the momentum of Y constant at $8.0 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ up to 0.40 s , but then instead of the momentum increasing uniformly with time between $t=0.40 \mathrm{~s}$ and $t=0.60 \mathrm{~s}$, the momentum decreased. This showed poor understanding of the principle of conservation of momentum. The total momentum of the two balls had to remain constant at $18 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. A very small number of candidates drew wobbly freehand lines. This was not penalised, but in future, candidates are reminded to draw straight lines using rulers.
		Total	5	
41	i	$\begin{aligned} & 250 \times 60=15000 \mathrm{~J} \\ & \text { energy }=\frac{15000}{0.65}=2.3 \times 10^{4}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	
	ii ii ii	$\text { drag force }=0.4 \times 6.0^{2}=14.4 \mathrm{~N}$ forward force $=$ power $/$ velocity $=$ $250 / 6.0=41.7 \mathrm{~N}$ $\text { acceleration }=\frac{41.7-14.4}{85}=0.32 \mathrm{~m} \mathrm{~s}^{-2}$	C1 C1 A1	
		Total	5	
42	i	Tangent drawn at $t=4.0 \mathrm{~s}$ Attempt at calculating the gradient v calculated from gradient and between $9.50-10.50\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$	Allow other correct methods Note working required for this mark

		$\begin{aligned} & s=20(\mathrm{~m}) \text { and } s=1 / 2 a t^{2} \\ & 20=1 / 2 a \times 4.0^{2} \text { or } a=2.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\ & v=2.5 \times 4.0 \text { or } v^{2}=2 \times 2.5 \times 20 \\ & v=10\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 0 \end{aligned}$	
	ii	change in momentum $=1200 \times 10$ or $12000\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ rate of change of momentum $=3000$ unit: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ or N OR $F=1200 \times 2.5$ rate of change of momentum $=3000$ unit: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ or N	C1 A1 B1 C1 A1 B1	Allow ECF from (i) Allow 2850-3150 Allow newton Allow ECF from (i) Allow newton
		Total	6	
43	i	$(p 1=4.4 \times 0.050)=0.22\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$	B1	
	ii	$\begin{aligned} & \text { (impulse }=) 1 / 2 \times 30 \times 0.02 \text { or } 0.30(\mathrm{~kg} \\ & \left.\mathrm{m} \mathrm{~s}^{-1}\right) \\ & -0.30=p 2-0.22 \\ & p 2=(-) 0.08\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Allow any correct re-arrangement Possible ECF from (i) Ignore sign Allow 0.52 for 2 marks
	iii	```(momentum of trapdoor =) 0.30(kg m s}\mp@subsup{}{}{-1} v=3.0(\mp@subsup{m s}{-1}{-1}```	C1 A1	Allow $\left(\mathrm{KE}_{\text {trapdoor }}=\right) 1 / 2 \times 0.05 \times\left(4.4^{2}-1.6^{2}\right)$ or $0.42(\mathrm{~J})$ Possible ECF from (ii) Allow 1 SF answer here Allow alternate methods involving CoE (giving 2.9) and e(giving 2.8) Examiner's Comments In this part the momentum of the trapdoor is not equal to the final momentum of the ball but is equal to the impulse provided to the ball by the trapdoor (albeit in the opposite direction to that of the rebounding ball).
		Total	6	
44		Level 3 (5-6 marks) Description and explanation of pattern changes and quantitatively explains link between de Broglie wavelength and potential difference. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description of how pattern changes and explanation of pattern changes and qualitatively explains link	B1 $\times 6$	Indicative scientific points may include: Description of pattern changes - Rings become closer (not just smaller) - Rings become brighter Qualititative explanation of pattern changes in terms of de Broglie wavelength and potential difference - Electrons gain greater energy - Electrons have a greater speed - Electrons have a greater momentum

between de Broglie wavelength and potential difference or
limited description of how pattern changes and quantitatively explains link between de Broglie wavelength and potential difference.

There is a line of reasoning presented with some structure.
The information presented is in the most-part relevant and supported by some evidence.

Level 1 (1-2 marks)

Limited description of how pattern changes and limited attempts to explain qualitatively the link between de Broglie wavelength and potential difference or
qualitatively explains link between de Broglie wavelength and potential difference.

The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.

0 marks

No response or no response worthy of credit.

- Implies smaller wavelength
- Smaller wavelength means less diffraction Shorter wavelength gives shorter path differences
- between areas of constructive and destructive interference

Quantitative explanation of pattern changes in terms of de Broglie wavelength and potential difference

- $e V=\frac{1}{2} m v^{2}$
- $p=m v$
- $v^{2} \alpha V$ or $p^{2} \alpha V$
- $\lambda=\frac{h}{p} \quad$ or $\quad \lambda \alpha \frac{1}{v}$
- $\lambda=\frac{h}{\sqrt{2 \text { 2meV }}} \quad$ or $\quad \lambda \propto \frac{1}{\sqrt{V}}$

Examiner's Comments

This question tested an understanding of electron diffraction. Many candidates gave a good qualitative explanation of how the pattern would change. High achieving candidates clearly demonstrated how the de Broglie wavelength λ was related to the potential difference V by equating the energy eV to kinetic energy, then using the definition of momentum and the de Broglie wavelength. Some candidates confused speed v with potential difference V. Many candidates gave a good qualitative explanation. Many candidates did not state that the rings would become brighter.

AfL

Candidates should be able to describe how to use light gates. In particular, candidates should be able to indicate the measurements that are needed to determine speed and acceleration. Candidates should state that the light gates should be connected to a timer or data-logger.

AfL

When analysing experimental data, candidates should be able to determine appropriate graphs to plot which will give a straight line (if the given relationship is true). Candidates should also be able to describe how unknown quantities may be determined using the gradient and / or y-intercept.

Misconception

There is some confusion between the equations to use for photoelectric effect and the equations to use when

				considering the de Broglie wavelength. For the de Broglie wavelength, a common misconception is to relate the energy to wavelength by the equation for the energy of a photon, $E=\frac{h c}{\lambda}$
		Total	6	
45		Level 3 (5-6 marks) Clear description of experiment and measurements and clear analysis. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description of experiment and some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description of experiment or Limited measurements or Limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	B1×6	Indicative scientific points may include: Description - Release method - Ensure bob is not pushed - Repeat experiment for same H - Repeat for different H - Centre of mass of single bob and joined bob considered - Keep bob string taught Measurements - Measure heights h and H with ruler - Use centre of mass of bob or another suitable method - Use video camera to record motion - Use of datalogger and appropriate sensor to measure H and h - Measure mass with (top pan) balance Analysis - Construct a table of h and H - Plot graph of h against H - LoBF should pass through origin. - Determine gradient or calculate h/H repeatedly - gradient $=\left(\frac{M}{M+m}\right)^{2}$ (gradient must be consistent with the plot) - Masses substituted into above expression and checked against experimental gradient
		Total	6	
46		Level 3 (5-6 marks) Clear explanation of terms and explanation of results correctly comparing momentum and kinetic energy. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: Explanation of terms - $p=m v$ - $E_{k}=\frac{1}{2} m v^{2}$ - Total momentum conserved in all collisions - Total energy conserved in all collisions - E_{k} conserved in elastic collision - E_{k} NOT conserved in inelastic collision

		Level 2 (3-4 marks) Clear explanation of terms and limited explanation of results comparing momentum or limited explanation of terms and some explanation of results or correct comparison of momentum and kinetic energy. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Has limited explanation of terms or limited comparison of momentum / kinetic energy. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		- \quad Speed of approach $=$ speed of separation in elastic collision Explanation of results - Initial $p_{\mathrm{A}}=15 \mathrm{~kg} \mathrm{~cm} \mathrm{~s}^{-1}$ or $0.15 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - Initial $E_{\mathrm{kA}}=0.015 \mathrm{~J}$ - Expt 1: - Speed of separation $=0.150+0.050=$ $0.200 \mathrm{~m} \mathrm{~s}^{-1}$ - p_{A} after collision $=(-) 0.375 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - p_{B} after collision $=0.1875 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - Total p after collision $=0.15 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - E_{kA} after collision $=0.0009375 \mathrm{~J}$ - $E_{k B}$ after collision $=0.0140625 \mathrm{~J}$ - Total E_{k} after collision $=0.015 \mathrm{~J}$ - Collision is elastic since E_{k} conserved - Expt 2: - p after collision $=0.15 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ - E_{k} after collision $=0.005625 \mathrm{~J}$ - Collison is inelastic since E_{k} not conserved - Momentum conserved in both collisions
		Total	6	
47	i	$\begin{aligned} & \rho=m / v=m / A v ; \text { so } m=A \rho v \\ & 7.5 \times 10^{-5} \times 1000 \times v=0.070 \\ & \text { giving } v=0.93\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1 A0	
	ii	$3.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	Accept 3.72
		$\begin{aligned} & \mathrm{F}=\Delta(\mathrm{mv}) / \Delta \mathrm{t}=0.070 \times(3.72-0.93) \\ & \mathrm{F}=0.195(\mathrm{~N}) \end{aligned}$	C1 A1	ecf (ii) accept 0.19 or $0.2(0)$
	iv	arrow into the shower head perpendicular to its face.	B1	award mark for a reasonable attempt.
		Total	6	
48	i	Both forces shown in correct direction and arrows of same length.	B1	
	ii	Zero.	B1	
	iii	(Conservation of momentum) $u_{x}=v_{x}+$ v_{z}	C1	

				not used the answer to (b)(i), the method in terms of the change of velocity is correct and clearly indicated.
	iii	For an elastic collision, kinetic energy/KE is conserved speeds are different (so for the same mass KE is different)	B1	Allow speed of approach $=$ speed of separation Allow correct calculations of KE for both speeds Ignore reference to the ball heating up Examiner's Comments Many candidates did not state that the kinetic energy is conserved - often there were general statements about energy being conserved. Some candidates did not relate their answer to part (ii) as required by the question. Some candidates determined the kinetic energy before and after the ball left the ground - candidates could gain full marks with this approach.
		Total	6	
50	i	$\begin{aligned} & a=4 n^{2} f^{2} \times \\ & \text { so } k=\left(m 4 n^{2} f^{2}\right)=1.7 \times 10^{-27} \times 4 \times 9.87 \\ & \times 43.7 \times 10^{26} \\ & k=292\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$	C1 B1 A1	condition for SHM
				substitution
				ecf if incorrect mass used
		(N 2 gives) $\mathrm{F}_{\mathrm{H}}=$ тнан and $\mathrm{F}_{\mathrm{I}}=$ mal (N 3 gives) $\mathrm{F}_{H}=\mathrm{F}_{1}$ can be implicit SHM gives a a (-)x hence $x_{H} / x_{1}=a_{H} / a_{1}=m / m_{H}=127$	B1 B1 B1 B1	allow total momentum $=0$ at all times
				SHM gives $\mathrm{v}=2 \mathrm{nf} \mathrm{x}_{\text {max }}$
				so $m_{H} X_{H}=m_{1 \times 1}$
				accept $127=\mathrm{x}_{\mathrm{H}} / \mathrm{X}_{1} \approx 10 / 0.08=125$
		Total	7	
51	i	$\begin{aligned} & T=293 \mathrm{~K} \\ & 3 / 2 \mathrm{kT}=1 / 2 \mathrm{mv}^{2} \\ & 3 / 2 \times 1.38 \times 10^{-23} \times 293=1 / 2 \times 4.7 \times \\ & 10^{-26} \times \mathrm{v}^{2} \\ & \mathrm{v}=510\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 C1 M1 A0	
				Note answer is $509.8 \mathrm{~m} \mathrm{~s}^{-1}$ to 4 s.f.
		1. Total vertical momentum after $=0$ Total vertical momentum before $=0$ (momentum is conserved)$\begin{aligned} & 2.4 .7 \times 10^{-26} \times v \times \sin 88^{\circ}=1.4 \times 10^{-24} \\ & \times 23 \times \sin 45^{\circ} \end{aligned}$	B1 B1 C1	
	ii	$v=480\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	Allow other correct methods.
		Total	7	
52	i	$\begin{aligned} & (p=) 6.6 \times 10^{-26} \times 990 \text { or } 6.5(3) \times 10^{-23} \\ & \left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1	

3.5 Newton's Laws of Motion and Momentum

		$\begin{aligned} & (\Delta p=) 2 \times 6.6 \times 10^{-26} \times 990 \\ & \Delta p=1.3 \times 10^{-22}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	A1	Ignore sign of answer
	ii	$\begin{aligned} & 990 /[2 \times 0.46](=1080) \\ & (F=\Delta p / \Delta t) \\ & (F=) 1.3 \times 10^{-22} \times 1000 \\ & F=1.3 \times 10^{-19} \mathrm{~N} \end{aligned}$	B1 C1 A1	Possible ECF from (b)(i) Note 1080 would give $1.4 \times 10^{-19}(\mathrm{~N})$
	iii	Use of $p=F / A$ or pressure $=($ total $)$ force / area Idea of multiplying by total number of atoms	B1 B1	Allow particles or molecules for atoms
		Total	7	
53	i	From $t=0$ to $t=2.0 \mathrm{~s}$: a non-zero horizontal line From $t=2.0$ to $t=3.5 \mathrm{~s}$: line showing v $=0$ From $t=3.5$ to $t=4.0 \mathrm{~s}$: non-zero horizontal line showing v is opposite in direction and magnitude larger than that of line drawn at $t=0$ to $t=2.0$.	B1 B1 B1	Judgement by eye
	ii	KE is constant. GPE increases linearly / proportional to t	B1 B1	Allow: 'at constant rate' for 'linear' Not: unqualified 'constantly' Examiner's Comments Nearly four fifths of candidates completed 20a well, especially if they clearly stated the equations for momentum and kinetic energy. Those that did not generally forgot that the question required an expression with ' p ' and ' m ' in it. $1 / 2$ pv was a common wrong answer. 20bi was answered well, with some candidates either slightly misreading the graph when the velocity became negative or not spotting that the line was steeper for the last section of the movement than it was in the first. Most candidates spotted that the KE was constant because the velocity was constant. Rather fewer candidates explained that the GPE increased at a constant rate.

3.5 Newton's Laws of Motion and Momentum

